UConn Health Center HomeNeuroscience Department


***Srdjan D. Antic, M.D.
*** Associate Professor
***UConn Health Center
***Dept. Neuroscience, Room E-3037
***263 Farmington Avenue
***Farmington, CT 06030-3401
***Email: antic@neuron.uchc.edu
***Tel: (860) 679-8468
***Fax: (860) 679-8766
    B422              Antic          
LLaboratory for Studying Rapid Processing of Electrical and Chemical Signals in Individual Neurons



Research in our laboratory is primarily directed towards understanding the cellular and molecular mechanisms of synaptic integration, synaptic plasticity, neuronal excitability and how dopamine modulates these fundamental processes. We have focused our attention on neurons and synapses in the prefrontal cortex, an area of the brain that plays an important role in working memory, planning and emotions. Prefrontal cortex is also of interest because this brain region, and its interaction with the neurotransmitter dopamine, are strongly implicated in some psychiatric diseases (e.g. schizophrenia). Our experimental methods include local and rapid application of neurotransmitters (glutamate & dopamine), electrophysiology (patch-clamp recordings), fast simultaneous multi-site imaging of the dendritic tree (calcium-sensitive dyes & voltage-sensitive dyes), computer simulations (NEURON), neuron tracing and immunolabeling.


Drugs that block dopaminergic receptors have been shown to alleviate some symptoms in schizophrenia. On the other hand, drugs that stimulate dopamine receptors produce schizophrenic symptoms in healthy people. These two facts have prompted scientist to postulate that neurotransmitter dopamine is intimately related to higher psychic functions (understanding, planning, interacting with others). Several decades ago experiments in non-human primates have shown that optimal dopaminergic transmission is absolutely necessary for normal cognitive function (Brozoski et al., 1979). In spite an extensive research effort that lasted for over 25 years, it is still not clear how exactly the release of dopamine affects neuronal networks and individual nerve cells.

We are investigating the cellular effects of dopamine-receptor activation in the mammalian cortex. We have recently used fluorescence imaging techniques and patch-clamp recordings to analyze AP-evoked and glutamate-evoked influx of calcium ions into different parts of the pyramidal dendritic tree. We are currently measuring how dopamine receptor stimulations change dendritic calcium concentration. Calcium ions are important messengers that link electrical and biochemical processes in the central nervous system. We hope that these investigations will enhance our understanding of the brain function and explain disturbances in brain function which lead to schizophrenia.

***Stem Cells  

Cell-replacement therapy is the most promising treatment for major neurological diseases including Parkinson’s disease and spinal cord injury. Ideally, one would like to replace the dying nerve cells with young human neurons. For this reason, the generation of viable neurons from human embryonic stem cells (hESCs) has become lately the focus of modern neurobiology and translational neuroscience. We are testing the effect of dopamine on the generation of neurons from human embryonic stem cells. More specifically, our working hypothesis states that the number and quality of dopaminergic neurons would improve in stem cell cultures treated with dopamine. Our goal is to create a stem-cell differentiation protocol that would reliably produce a large number of dopaminergic neurons, ready for use in cell-replacement therapy of the Parkinson’s disease.





The Neuroscience Program includes faculty members from diverse departments at the University Connecticut Health Center, as well as a large and dedicated group of post-doctoral fellows, students and research staff.